North Dakota INBRE 2010 Annual Meeting – Thursday, Oct. 28, 2010 http://ndinbre.org

ABSTRACT SUBMISSION GUIDELINES Deadline: Monday, Oct. 18, 2010

ELECTRONIC SUBMISSION BY E-MAIL

To: <u>kcisek@medicine.nodak.edu</u> Subject: INBRE Abstract Submission Attach your abstract

GUIDELINES

- 1. Submission as a word document will allow us to make format changes as necessary. Abstracts will be compiled into a booklet.
- 2. Send as Microsoft Word document (.doc/.docx)
- 3. Left and right, top and bottom margins -1 inch
- 4. Use single spacing; Font Times New Roman, 10 point
- 5. The body of the abstract should include purpose, brief methods, summary of results and conclusion. List support on a separate line.
- 6. 250 word limit for body of abstract (not including title, authors, affiliations, support)
- 7. No tables or figures; see sample below.

SAMPLE ABSTRACT

RGS7 Protein Suppression of $G\alpha_0$ Protein-Mediated α_{2A} -Adrenergic Receptor Inhibition of Mouse Hippocampal CA3 Epileptiform Activity

Brian Nelson¹, Brianna Goldenstein¹, Ke Xu¹, Elizabeth Luger¹, Jenna Wald¹, Lorraine O'Shea¹, David Weinshenker², Raelene Charbeneau³, Xinyan Huang³, Richard Neubig³, Van Doze¹. ¹Department of Pharmacology, Physiology & Therapeutics, University of North Dakota, Grand Forks, ND; ²Department of Human Genetics, Emory University, Atlanta, GA; ³Department of Pharmacology, University of Michigan, Ann Arbor, MI.

G-protein coupled α_2 adrenergic receptor (AR) activation by epinephrine (EPI) inhibits epileptiform activity in the mouse hippocampal CA3 region. The mechanism underlying this action is unclear. This study investigated which subtypes of α_2 ARs, G-proteins (G α_0 or G α_i), and RGS proteins were involved in this response using recordings of hippocampal CA3 epileptiform bursts in mouse brain slices. First, we determined that this effect was mediated by the α_{2A} AR subtype as the inhibitory action of EPI on epileptiform burst frequency was abolished in slices from α_{2A} AR, but not α_{2C} AR, knockout mice. Next, using transgenic mice with the G184S Gnai2 allele (knock-ins) which interrupts G-protein α unit binding to regulators of G-protein signaling (RGS), we found that the α_{2A} AR antiepileptic effects of EPI were enhanced in hippocampal slices from mutant G α_0 mice but not G α_{i2} mice. Finally, knockout mice for the RGS7 protein family were found to have increased α_{2A} AR-mediated hippocampal antiepileptic actions compared to their littermate controls. These results indicate that the EPI-mediated inhibition of mouse hippocampal CA3 epileptiform burst activity is through an α_{2A} AR/G α_0 -mediated pathway under strong inhibitory control by proteins of the RGS7 family. This suggests a possible role for selective α_{2A} AR agonists or RGS7 inhibitors as a novel antiepileptic drug therapy.

Supported by the American Physiological Society, ND EPSCoR EPS-0447679, NSF 0347259, NSF 0639227, NIH P20RR0167141, NIH 5R01DA17963 and NIH 5R01GM039561.